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This paper gives the theory of the motion of a finitely conducting, viscous liquid 
between long, concentric, rotating cylinders under a radial magnetic field in the 
case of high Hartmann number. Because the current and vorticity contents of 
a Hartmann layer are related, it  is easy to predict the behaviour in both steady 
and unsteady states. Experiments with mercury which confirm the theory 
closely are described. As these were developed for an educational film on 
magnetohydrodynamics, they have the attraction that the results are immedi- 
ately obvious to the observer. 

Introduction 
In  the course of making an expository film on magnetohydrodynamics 

(ShercliB 1965) we have developed a new experiment which demonstrates 
strikingly the main property of the Hartmann layer, namely, that its current 
content and vorticity content are proportional to one another. The experiment 
is very convenient because it does not involve a flow loop, pump, etc., and the 
essential results are apparent to the naked eye. 

The experiment is performed in an annular tank of mercury, contained 
between two concentric, non-conducting cylinders rotated steadily in order to 
make the fluid move in concentric circles. A radial magnetic field B can be 
applied externally. Currents are then induced axially (i.e. in the v x B direction), 
but no current enters or leaves the fluid. The Hartmann number M or gB(c/v)*, 
based on annular gap g and mean field strength B, is large ( > 200). The symbols 
CT and 7 denote electrical conductivity and viscosity, respectively. The Hartmann 
layers at the cylinders are relatively thin (with thickness of order g / M )  and can 
be treated as current/vortex sheets. 

Before the experiment and results are described we first consider the theory 
of the motion at high Hartmann number. This is one of the many cases where 
the theory of MHD is easier than the corresponding problem in the absence of 
electromagnetic effects. Moreover, the experiment itself is very much better 
behaved with the magnetic field than without it because the magnetic field 
suppresses unwanted secondary flows. 



702 W .  H .  Heiser and J .  A .  Shrcliff 

Theory : Steady state 
Consider first the problem of axisymmetric steady flow between concentric, 

non-conducting cylinders of such length that end effects can be neglected. Let 
there be a purely radial magnetic field imposed. One or both of the cylinders 
rotates steadily and the resulting fluid velocity is assumed to be everywhere 
azimuthal, i.e. no secondary flow or instability occurs. This assumption is borne 
out in the experiments. Conditions are invariant in the axial direction and all 
currents are purely axial. The specification of the problem is completed by the 
condition that the currents do not enter or leave the fluid, but close on themselves 
at the remote ends. 

The problem is an easy exercise in linear magnetohydrodynamics and the 
velocity is given by an expression in powers of T ,  the radius. Here we propose to 
go straight to the asymptotic form at high M ,  which is much more instructive. 

When M is large one can apply the usual technique (see, for example, Shercliff 
1956) of neglecting viscosity in the bulk of the flow and using the standard 
boundary condition for the Hartmann current/vortex sheets at the walls 

where J is the current content of a sheet, per unit perimeter, and Av is its vorticity 
content per unit perimeter, i.e. the jump in tangential velocity across it. This 
makes an interesting contrast with ordinary inviscid hydrodynamics where Av, 
the slip at a wall, is unconstrained. In  the magnetic case, however small the 
viscosity is, it  still can govern the problem via the boundary condition (1). Note 
that B itself does not appear explicitly in (1) although B controls the problem, 
through M .  

I n  the bulk of the flow, the azimuthal component of the equation of inviscid 
motion is very degenerate; there is no azimuthal component of acceleration and 
no azimuthal pressure gradient. So the magnetic force j x B (which would be 
azimuthal) must vanish and there can be no currents j in the bulk of the flow. 
The fluid moves in such a way that v x B is irrotational and can be balanced by 
the axial electrostatic field E. This implies that the fluid moves like a solid body, 
a result which can be seen in various ways, for example: 

(i) only then can any loop drawn in the fluid link a constant magnetic flux and 
thereby avoid inducing eddy currents in the bulk of the fluid; 

(ii) since curl E = 0 in the steady state, the axial electric field is uniform and, 
in the absence of currents, v x B must be uniform. But B is proportional to I/r 
and so v must be proportional to r,  and we have solid-body rotation. 

Except in the special case where the two cylinders have the same angular 
velocity, the solid-body rotation of the fluid involves slip a t  both cylinders. It 
has to be both cylinders because slip implies current and the current up one 
Hartmann sheet can only return down the other, there being no current in the 
bulk of the flow or out of the fluid. This simple condition suffices to determine the 
two slips and the value of the fluid's uniform angular velocity. 

Let the angular velocities of the two cylinders be w1 and w2 and their radii 
r1 and r2 (see figure 1). If the angular velocity of the fluid is o, the two slips are 

(2) 

J = (CTT))AW, (1) 

Avl = rl(w - wl), Av, = ra(wa - w ) .  
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The conservation of current flow demands that 

21rr,(q)*Av, = 2m2(q)*Av,,  i.e. rlAvl = r,Av,. (3) 

This is also the condition that the viscous torques on the two cylinders are equal, 
since the viscous shear stress at a wall = B A v ( q ) & ,  and B cc l/r. 

FIGURE 1. The velocity profile between rotating cylinders 
at large Hartmann number. 

FIGURE 2. The velocity profile for the ewe corresponding to the experiment. 

From (2) and (3) it  follows that 

w = ( r ;wl+r%wa) / ( r ;+r i ) .  (4) 

w = *,, (5 )  

In  the experiment reported here, w, = 0 and r, = 2rl, and one should expect 
the result 

at least for cylinders of great length. The corresponding velocity profile is shown 
in figure 2. 

Note that the induced magnetic field due to the currents is azimuthal, i.e. 
parallel to the velocity, and does not affect the problem. If the imposed magnetic 
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field is not purely radial, although still axisymmetric, the results are not affected. 
Again curlv x B = 0 implies solid-body rotation in the bulk of the fluid. The 
argument in terms of a loop drawn in the fluid makes this self-evident. This fact 
means that extreme care in avoiding fringing of the magnetic field in an experi- 
ment is not necessary. 

Of more concern in an experiment is the question whether the fact that the 
fluid must be of finite axial length has serious repercussions. One effect of the 
ends is to interrupt the axial current flows. From the loose analogy with flow in 
rectangular channels under transverse fields (Shercliff 1953) one is encouraged to 
expect that in an experiment the currents up and down the Hartmann sheets will 
find their way radially across the ends of the fluid in some kind of thin layer 
probably of thickness of order g / M i .  In  our experiment one end is a horizontal 
free surface, the other a solid wall, attached to the outer cylinder, the axial length 
being approximately twice the gap dimension. 

Any departure of the imposed magnetic field from being radial will affect these 
end layers because the currents there have to flow nearly parallel to the field to 
avoid producing excessive j x B forces. 

The other major effect of the ends is that the velocity ceases to be independent 
of axial distance there and so the centrifugal force distribution p(v. grad) v 
(where p is density) is rotational and cannot be balanced by pressure. There will 
thus be a tendency towards secondary flow involving azimuthal vorticity. The 
azimuthal-induced fields Bi are very small in practice, but they too would tend 
to promote secondary flow because of the part ( Bi . grad) Bi/p  of j x B, which acts 
radially and is rotational at the ends. 

Any secondary flow would involve axial velocities, however, and these tend to 
be directly damped by the radial magnetic field, because azimuthal currents can 
circulate freely. The evidence of the experiments is that secondary flow is not 
a serious problem when the magnetic field is on. 

These end-effect problems await analysis. An obvious first step would be to 
make the analysis linear by ignoring secondary flow. 

Theory: Unsteady state 
The transient behaviour when the state of rotation of the cylinders is suddenly 

changed is next analysed approximately for the case of iil large. Again we 
assume that the flow is axisymmetric, with only azimuthal velocities, a radial 
imposed field and axial induced currents, the remote ends precluding current 
flow out of the fluid. 

First, consider the transient behaviour of departures from solid-body rotation 
in the bulk of the flow where viscosity is ineffectual. The relaxation time is of 
order p/c-B2, which is of order A? times shorter than the overall relaxation time (6) 
which emerges from the analysis of viscous wall effects below. Evidently 
departures from solid-body rotation die out very swiftly, if they occur a t  all. In 
watching the experiment one is very forcibly struck by the contrast between the 
strength of the magnetic ‘rigidity’ of the bulk of the fluid and the relative 
feebleness of the viscous coupling to the walls. 
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So it is a good approximation to treat the bulk of the flow as undergoing 
solid-body rotation at an angular velocity w ,  which can vary with time. 

The equation of motion for the fluid can be written down in terms of its total 
rate of change of moment of momentum. The torque on it about the axis can be 
calculated from the viscous shear stresses BAv(q)*  at the walls, there being no 
net magnetic torque on the whole fluid if no current leaves the fluid, for 

magnetic torque = 

Br being constant. Hence we have, per unit axial length, 

viscous torque = 2nr2,B2Av,(a7)* - 27rr:B1Av1(a7)* 

= 2nBr(a7)8(r2,w2+r4w,-w(r~+r~)) ,  by (2) 
= &np(ri - r j )  (dw/dt), 

using the moment of inertia of the fluid and ignoring the inertia of the Hartmann 
sheets. This simple differential equation shows that the steady value of w already 
discussed is approached exponentially from above or below with a characteristic 
time 

Experiments 
Figure 3 shows in section the apparatus in which the experiments were per- 

formed. It was symmetric about the vertical axis X X .  The magnet poles PP 
were connected by a yoke (not shown) which linked an exciting winding. In  the 
experiments the radial field was approximately 0.20 Wb/m2 at a radius of 6.0 cm. 
Mercury M was contained in the annular tank formed by the poles and the non- 
conducting base B. The inner pole was covered by an inverted cylinder C which 
could be rotated at about one revolution per second about the axis by means of 
the shaft X, driven by a motor below. This cylinder and both pole faces were 
given an insulating coating. Mercury in the narrow space between the cylinder 
and the inner pole would have no effect on the experiment. Details of bearings 
are omitted from figure 3. 

The state of motion of the mercury was revealed by the tethered, slender 
float F,  mounted in bearings on the light, pivoted, counterbalanced arm AA 
which constrained it to move on a circular path, concentric with the cylinders. 
The float had the right buoyancy to enable the paddles GG attached to it to 
remain in the centre of the mercury. There were four paddles, arranged in the 
form of a cross when seen from above, for the purpose of revealing the vorticity 
of the mercury. The paddles were non-conducting, but would not impede the 
currents which would be vertical. (Note that conducting paddles could suffer 
unwanted, induced j x B forces.) No material used in the float had magnetic 
properties. The disk D on top of the float and the top of the inner cylinder were 
painted with a simple black and white pattern to make their rotation clearer in 
the film. 

Various experiments were performed. With the field switched off, the motion 
was rather ill-behaved because of secondary flows and instability. Nevertheless, 

45 Fluid Mech. 22 
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it was possible to achieve some fairly steady motions in which, with the inner 
cylinder rotating clockwise, the vorticity float rotated anticlockwise while 
orbiting clockwise round the axis at about half the speed of the inner cylinder, 
just as would be expected if the velocity fell slowly from a maximum at the inner 
cylinder to zero at the outer one, in a steady, viscous flow. 

FIGURE 3. Section of apparatus. 

The changes which occurred as soon a0 the field was turned on were dramatic 

(i) the total disappearance of unsteadiness, etc., due to secondary motions, 
(ii) the immediate reversal of the vorticity revealed by the float, and 
(iii) the immediate onset of solid-body rotation in the mercury, with slip at 

both cylinders. The angular velocities of the float itself and of its orbit round the 
axis became identical and equal to one-fifth of the angular velocity of the inner 
cylinder, in accordance with the prediction (5) to a high order of accuracy. This 
ratio was apparent to the eye simply by counting revolutions. 

Experiments were also conducted where the fluid motion was started from rest 
with the field on all the time. The inner cylinder would start to rotate at full speed 
virtually instantaneously, but the fluid approached its steady motion much more 
slowly. The vorticity float indicated that the fluid accelerated exactly like a 
solid body. The striking contrast between the magnetic ‘rigidity’ of the mercury 
and the feeble viscous coupling to the walls has already been referred to. 

From a scrutiny of successive frames of the film record of the starting process, 

to behold, though fully expected. They included: 
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the departure of the angular velocity of the fluid from its final steady value was 
found to decay in an exponential fashionwith a characteristic 1 : e time of approxi- 
mately 30 sec. This value should be compared with the prediction (6) for a system 
of infinite length which gives a value of 34sec for the charkcteristic time if the 
approximate values B = 0-20Wb/m2 at r = 0.060 m, r2 = 2r, = 0-080 m, 
p = 13,600kg/m3, cr = 1.05 x 106mho/m, 7 = 1-55 x 10-3kg/m.sec, are inserted. 
The observed time is slightly smaller than that predicted, probabIy because B 
was measured near the top and may have been stronger over much of the gap. 

When the cylinder was suddenly stopped after steady rotation had been 
established, the field being kept on, the decay of the motion was according to  
a similar exponential law, but the 1 : e time was 20 sec, not 30 sec. One may 
speculate that this difference was due to viscous drag on the stationary base. 

Concluding remarks 
We have described an MHD demonstration experiment which, without the 

need for particular care over the uniformity of the magnetic field, etc., behaves 
in a very docile manner with none of the unsteadiness or other complications 
which plague so many ordinary fluid-mechanical demonstrations. Moreover, the 
results are immediately intelligible in terms of simple ideas such as the properties 
of the Hartmann layer. The most difficult part of the apparatus to make is the 
vorticity float and its carriage. We wish particularly to acknowledge the skill and 
patience of Jim Henry, who constructed the apparatus. The work was supported 
by the National Science Foundation. 
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